بهبود الگوریتم زنبور عسل ژنتیکی برای انتخاب ویژگی های موثر در پیش بینی سرطان پستان از بین عادات غذایی، عوامل فرهنگی، علایم بالینی و نتایج آزمایشگاهی
Authors
Abstract:
مقدمه: کشف ویژگی های موثر در بروز سرطان پستان دارای اهمیت است. وجود علایم مختلف این بیماری، تشخیص را برای پزشکان دشوار می کند. پیشگیری از ابتلا به سرطان پستان با آگاهی از عوامل تاثیرگذار در بروز بیماری، میسر میگردد. هدف این مقاله، انتخاب ویژگیهای موثر در پیشبینی سرطان پستان از بین عادات غذایی، عوامل فرهنگی و نتایج آزمایشگاهی است. برای این کار یک مدل بهینه مبتنی الگوریتم زنبور عسل ژنتیکی برای افزایش دقت یادگیری ماشین معرفی میشود. روش بررسی: در این مطالعه، اطلاعات بیماران از پایگاه داده بیمارستان فوق تخصصی مرتاض یزد جمع آوری شده است. پرونده پزشکی 711 بیمار مبتلا به سرطان پستان با تعداد 63 ویژگی مورد بررسی قرار گرفته است. هر یک از بیماران حداقل به مدت دو سال تحت پیگیری بوده اند. ویژگیهای تاثیرگذار در ابتلا و تشخیص سرطان پستان از بین عادات غذایی، عوامل فرهنگی، علایم بالینی و نتایج آزمایشگاهی، با استفاده از الگوریتم GBC و ماشین بردار پشتیبان انتخاب شد. یافته ها: ویژگیهای استعمال سیگار و قلیان، عدم فعالیت ورزشی، اشتغال در شیف شب و تجرد از بین عادات غذایی و عوامل فرهنگی در ارتباط با تشخیص سرطان پستان انتخاب شدند. همچنین مدل پیشنهادی ویژگیهایی مانند: مقایسه نتیجه ماموگرافی قبلی و فعلی، مدت مصرف قرص ضدبارداری، هیستروکتومی، جایگزینی هورمون، میزان تو رفتگی نوک پستان، میزان درد، نوع ترشح و توده موجود در تصاویر ماموگرافی را موثر در تشخیص این بیماری دانست. هیچ ارتباط معناداری بین سرطان پستان و ویژگیهایی مانند استفاده از ماکروفر در آشپزخانه، نوع برنج و روغن مصرفی یافت نشد. نتیجه گیری: با استفاده از عادات غذایی و عوامل فرهنگی در پیشبینی سرطان پستان، مدل پیشنهادی نسبت به سایر مدل های مورد مقایسه مانند فازی و شبکه عصبی، دارای حداقل میزان خطا و بیشترین دقت و صحت است.
similar resources
ارزیابی تأثیر انتخاب ویژگی و توابع کرنل مختلف در عملکرد SVM برای تشخیص سرطان پستان
مقدمه: سرطان پستان یکی از رایجترین سرطانها در میان زنان است. در تصاویر ماموگرافی، تشخیص تومورهای خوشخیم از بدخیم به دلیل شباهت ساختاری کاری دشوار و زمانبر است. یادگیری ماشین یک شاخه از هوش مصنوعی است که میتواند به صورت ابزاری کمکی در کنار پزشک قرار گیرد و آنها را در تصمیمگیری یاری کند. ماشین بردار پشتیبان SVM یکی از رایجترین روشهای یادگیری ماشین است که عملکرد آن به نوع تابع کرنل و ویژگ...
full textانتخاب ویژگی های موثر در تشخیص سرطان پستان با استفاده از مدل های پارامتریک یادگیری ماشین
چکیده مقدمه: آزمایش آسپیراسیون سوزنی روشی کم هزینه، آسان و سریع برای تشخیص دقیق و زود هنگام سرطان پستان است. با استفاده از خصوصیات استخراج شده از آزمایش آسپیراسیون سوزنی و با کمک تکنیک های یادگیری ماشین می توان سیستمی کارآمد را برای تشخیص سرطان پستان طراحی نمود که با دقت بالایی خوش خیم یا بدخیم بودن تومورهای پستان را تشخیص دهند. هدف از انجام این مطالعه، انتخاب ویژگی های موثر در تشخیص سرطان پستا...
full textارزیابی تأثیر انتخاب ویژگی و توابع کرنل مختلف در عملکرد SVM برای تشخیص سرطان پستان
مقدمه: سرطان پستان یکی از رایجترین سرطانها در میان زنان است. در تصاویر ماموگرافی، تشخیص تومورهای خوشخیم از بدخیم به دلیل شباهت ساختاری کاری دشوار و زمانبر است. یادگیری ماشین یک شاخه از هوش مصنوعی است که میتواند به صورت ابزاری کمکی در کنار پزشک قرار گیرد و آنها را در تصمیمگیری یاری کند. ماشین بردار پشتیبان SVM یکی از رایجترین روشهای یادگیری ماشین است که عملکرد آن به نوع تابع کرنل و ویژگ...
full textپیش بینی آسیب بافت ریه از طریق بررسی پارامترهای بالینی و دزیمتریکی در بیماران مبتلا به سرطان پستان
Background and purpose: Breast cancer is the most common type of cancer among women. In radiation therapy for breast cancer it is important to prevent damage to normal tissues particularly to lung tissue. In this study, we investigated the incidence of damage in patients with breast cancer by clinical and dosimetric parameters to identify the predictive factors. Materials and methods: An exp...
full textعوامل پیش بینی کننده پاسخ و مقاومت به هورمون تراپی در سرطان پستان
این مقاله فاقد چکیده میباشد.
full textMy Resources
Journal title
volume 11 issue 3
pages 71- 82
publication date 2018-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023